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Forward symplectic integrators and the long-time phase error in periodic motions

Sante R. Scuro and Siu A. Chin
George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Department of Physics, Texas A&M University,
College Station, Texas 77843-4242, USA
(Received 1 December 2004; revised manuscript received 22 February 2005; published 19 May 2005

We show that when time-reversible symplectic algorithms are used to solve periodic motions, the energy
error after one period is generally two orders higher than that of the algorithm. By use of correctable algo-
rithms, we show that the phase error can also be eliminated two orders higher than that of the integrator. The
use of fourth order forward time step integrators can result in sixth order accuracy for the phase error and
eighth order accuracy in the periodic energy. We study the one-dimensional harmonic oscillator and the
two-dimensional Kepler problem in great detail, and compare the effectiveness of some recent fourth order

algorithms.
DOI: 10.1103/PhysReVvE.71.056703 PACS nuniderd5.10—-b
I. INTRODUCTION theory[17]. It has been studied extensivelyl-15 for its

labor saving feature of only having to iterate the kernel al-

Symplectic integratorfl-5] preserve Poincaré invariants gorithm. Here we draw the connection between symplectic
when integrating classical trajectories. For periodic motiongcorrector algorithms and the phase error in periodic motion.
their energy errors are bounded and periodic, in contrast tMuch of our analysis is analytical rather than numerical, so
nonsymplectic Runge-Kutta type algorithri®] whose en- that one can understand the result in a transparent way. We
ergy error grows linearly with the number of peridds-9]. also found thatforward time step symplectic algorithms
Energy conservation alone suggests that symplectic algg18-22 generally have much smaller phase errors than tra-
rithms are a better long-time integrator of classical motionsditional algorithms with backward intermediate time steps
However, for periodic motion, even symplectic algorithms[3,5,23-25.
are not immune from the linear growth of the phase error In this work, we will analyze in detail the two fundamen-
[7-9]. Whereas the energy error is the error of #etion  tal prototypes of periodic motion: the one-dimensioftD)
variable, the phase error is the error of #mglevariable. Of  harmonic oscillator and the two-dimensiot2D) Kepler or-
the two, the phase error is even more important in determinbit. We are not interested in solving the harmonic oscillator
ing the long-term accuracy of trajectories. For exampleper sg but only in using it as a vehicle for understanding the
when symplectic algorithms are used to compute thehase error and the working of our algorithms. It is only with
Keplerian orbit, the elliptical orbit is easily seen to precesssuch a simple model that we can show analytically how the
The precession is of nearly constant radius. Since the semphase error can be reduced by fine-tuning the algorithm. To
major axis of the ellipse is fixed by the initial energy, the the extent that harmonic motion is the simplest periodic mo-
constancy of the precession radius implies excellent energton, this is clearly a necessary first step for proposing any
conservation. Yet in spite of that, the precession itself impliescheme of phase error reduction. In the 2D Kepler case, we
that the trajectory is highly inaccurate. This orbital preces-demonstrate the usefulness of forward symplectic algorithms
sion is a direct manifestation of phase error. Thus to preservas compared to existing negative time step algorithms. For
the long-term accuracy of periodic trajectories, despite theompleteness, we begin with a brief review of the operator
primacy of energy conservatidii0], one must seek to re- construction of symplectic algorithms, followed by a synop-
duce the phase error directly. sis of symplectic corrector algorithms. In Sec. V, we illus-

For periodic motion, the only error that matters is errortrate the basic idea of our analysis by showing how a second
that persists after one perid8]. A fundamental finding of order algorithm can achieve fourth order accuracy in the
this work is that, for periodic motion after one period, the phase error when solving the 1D harmonic oscillator. In Sec.
energy error is at leagtAt)? times that of the phase error, VI, we repeat the same analysis for a class of fourth order
where At is the time step size used. Thus at sm&lithe  forward algorithms. Error terms up to eighth order are com-
phase error is the dominant error governing the long-ternputed by use of the Lie seri¢&7] expansion. Beyond eighth
accuracy of periodic motion. Moreover, we show that theorder, the error terms can be determined by exactly solving
phase error of the symplectic correcfdd—15 kernel algo-  the matrix model. All these are done analytically. We repeat
rithm is (At)? times the phase error of other algorithms nomi-the analysis for the Kepler problem in Sec. VII. Here, we
nally of the same order. Recently, one of [U$] has made compare the phase error numerically for a number of recent
explicit the “correctability” requirement in deriving a cor- fourth order symplectic algorithms. We summarize our con-
rectable kernel algorithm. This criterion determines the opticlusions in Sec. VIII. For the reader’s convenience, some
mal symplectic algorithms for solving periodic motion. The lengthy formulas and explicit calculations are given in the
corrector algorithm has its origin in canonical perturbationAppendix.
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I. OPERATOR FACTORIZATION

N
e(T+V) tieT avjeV
Symplectic algorithms can be derived most simply on the € |1;[1 erer (2.10

basis of operator factorizatiofSee the excellent review by

Yoshida[2] and earlier references thergifror any dynami-  with a well-chosen set of factorization coefficieftsv;}. In

cal variableW(q;, p)), its time evolution is given by the Pois- most cases, we will consider only the left-right symmetric
son bracket, and therefore by the corresponding Lie operatdactorization schemes such that eithgr0 andv;=vpn_i+1,

H associated with the Hamiltonian functit(q;, p), i.e., ti1=tn-ie1, OF UN=0 @ndv;=vn, ti=ty-i41. In either case,
the algorithm is exactly time-reversible, and the energy error

dw _ _ OWIH  IWH terms can only be an even function ©f Such a symmetric
dt {W,H} = 3_%5_9 - (9_P|t9_q. (2.1 factorization is then at least second order. As first proved by
Sheng[29], and Suzuki30], beyond second order, decom-
H o oH o A positions of the form(2.10 must contain some negative co-
:<—— - ——)W: HW. (2.2 efficientst; andv;. Goldman and Kapef31] further proved
P I I; I that beyond second order, there must be at least one pair of

negative coefficientst;,v;). To circumvent this backward
time step restriction18,19, one must factorize the evolution

operator in terms of operator'AE, V and the commutator

A [\A/,['Ar,\A/]]. In this work, we will further demonstrate that
QW={W,Q}. (2.3 these forward symplectic algorithms are also effective in re-

. . ) _ ducing the phase error.
As we will see, this fundamental operator mapping underpins

the entire development of symplectic integrators.
The operator equatiof2.2) can be formally solved via

(Repeated indices imply summatiprivore generally, for
any dynamical variabl®, we can define its associated Lie

operatorQ via the Poisson bracket

Ill. SYMPLECTIC CORRECTOR ALGORITHMS
W To see the relevance of symplectic corrector algorithms to
W(t) = e"W(0). (2.4 periodic motion, we recapitulate some recent respig].
Symplectic algorithms are derived by approximating the evol€t 7a be a symmetric, approximate factorization of the short
. H - . i i (T+V)
lution operatore™ for a short time in a product form. For time evolution operatoe® ™,

Hamiltonian function of the standard separable form, N
) 1 /]‘A: H etieTeUia‘V: eSHA, (31)
H(@.p) =T(p) +V(a), with T(p)=Zppi, (2.9 i=1
the Hamiltonian operata2.2) is also separable, _then f[he approximate Hamiltonian operath( must be even
n e, Le.,
H=T+V, (2.6) . N .
o Ha=T+V+eXern[T.[T,VI] +en[V,[T,V]]) + O,
with first order differential operator§ andV given by (3.2
T= AN =p, 9 2.7 with error coefficient®erty, ety determined by factorization
piog g’ ' coefficients {t;,v;}. Consider the similarity transformed
propagator,
~ N 9 d - . .
V=- 9 9P = Fi(Q)a_p_- (2.9 T,=ST,St=Seths =S zgeth (3.3
I | |
Note thattl. T. andV individually satisfy the defining equal- where the last equality defines the transformed Hamiltonian
ity (2.3. n H,. If we now take
The corresponding Lie transformi&7] €7 and e?V are R
then displacement operators which slgjftand p; forward in S=exdsC], (3.4
time via

where C is the corrector, then the following fundamental
g—q+epandp —p+eF. (2.9 result

Thus, ife{'q can be factorized into products of Lie transforms iy = e€é|:| e‘Sé- QL + [é i 1+ i 2[6; [é i 1+

eT andetV, then each factorization gives rise to an integrator A~ = A° T AT S TIALT o & L A ’
for evolving the system forward in time. Most of the existing (3.5)
literature on symplectic algorithms is concerned with decom- '

posinge*t to arbitrarily higher order in the product form of implies that
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=T+ 0+ eernl L1, V11 + enl U1, 01) eV =eh, 4.9
+ s[é,'i’+ \7] + e (3.6) Wherel:|A is the approximate Hamiltonian operator

i i - T S T H
One immediately sees that the choice Ha=H+ Es[T,V] + 1—28[T,[T,V]] - 1_28[\/'[1—,\/]] .

C=ecp[T,V] (3.7 (4.2

would eliminate either second order error term with, of the algorithm. This follows directly from the Baker-
=erqy OF Cry=6,7y. More importantly, ifH, is constructed Campbell-Hausdorff(BCH) formula. Thus the algorithm
such that evolves the system according to the modified Hamiltonian
I:|A rather than the original Hamiltonian. Nevertheless, the
errv=evTws (3.8 Hamiltonian structure of the system is preserved.eAs 0,

then both error terms can be eliminated by the corrector.ON€ recovers the original dynamics. Moreover, knowkiyg
Thus for such an approximat®, the transformed propagator aIIo_ws us to determine t.he e}ctual Ha_1m|Iton|_an functiep
7 , will be fourth order. This is the fundamental “correctabil- which governs the aIgorlthms. evolgtlon. This can be done
ity” requirement for correcting a second ord&x to fourth systematically by use of the Lie-Poisson bracket correspon-
order[16]. In general, the corrector can be more complicatecﬂe_nce' To make this part of the discussion self-contained, we
than the kernel algorithn,. However, when one iterates Pi€fly summarize some pertinent results.
T ,, all intermediate correctors cancel and only the initial and From the fundamental defining equalig.3), we can de-
final corrector remains. For periodic motion, even the initialdUc&Ha via
and the final corrector would have cancelled after exactly
one period. Hence even #, is only second order, if it sat-
isfies the correctability requireme(8.8), then its error after
exactly one period would be fourth order. Thus among al
second order algorithms, those that are “correctable,” i
satisfy the the correctability requireme(i3t8), would be two
orders better. With a correctable algorithm, we will show W= T -\ - _
later that the phase error is improved intrinsically even with- [TVIW=TIWV = VIW T = {W V3T = W T V)
out applying the corrector. However, if the step sizis not ={W{V,T}, (4.4)
commensurate with the period, one may step over the min
mum of the error function without knowing that it is there. In
this case, it is essential to apply the corrector just prior to AWV T+ {T, WLV + {V, T, W = 0.
computing any observable. The advantage of a corrector al- ) o )
gorithm is that for long-time integration, one usually only Equality (4.4) implies the following correspondence between
needs to apply the corrector sparingly at a few selecte§ommutators of Lie operators and Poisson brackets of dy-
points in time. namical variables:

This correctability requirement can be generalized to
higher order. At higher order$i, will have error terms of

the form[T,Q;] and[V,Q;], whereQ; are some higher order There is thus an order reversal, or a simple sign change, in
commutators generated ﬁyand\?. If I:|A is of order 21in &, going from Lie commutators to Poisson brackd®here is

, o - no such order reversal in the usual correspondence between
thenH, can be of order 2+2 if Hy's error coefficients for  q,anwum mechanical commutators and Poisson bragkets.
[T,Q] and[V,Q;] areequalfor eachQ;. This is the funda- This order reversal will only change the sign of odd-order
mental corrector insight of16]. In the following sections, brackets, as illustrated in the following examples:
we will demonstrate how this insight can be used to reduce

HAW={W,H,}, (4.3

if we know how commutators 6f andV transform back into
lfunctions under the operator mappit®)3). By repeated ap-
'e'plications of Eq.(2.3), we have

Where the last equality follows from the Jacobi identity

[T,V] = {V,T}=—{T,V}. (4.5)

the phase error in practical applications. [\7, ['i',\?]] — {V, T}V ={VAT,V}},
IV. THE MODIFIED HAMILTONIAN AND ERROR [T.[V,[T.VI]] — {4V, THV T = = {T{V,{T, V111
STRUCTURE

(4.6)

The distinct advantage of symplectic algorithms is nOtAppIying this to Eq.(4.3) gives, term by term
only that they preserve all Poincaré invariants, but that their ’ ’

corresponding modified Hamiltonians and error structures
can be systematically determined. This is of paramount im-
portance when one seeks to understand the fundamental
cause of an algorithm’s error. To illustrate the approach, we L oaoa

; : ; ) o eV, [T V]IW+ -,
begin by analyzing the simplest, first order factorization, 12

- P AP 1 pzrze
HAW: HW+ ES[T,V]W-}' 1_282[T1[T1V]]W
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Ha=T+V+eX(ern(T?V} + ey fVTV)

{W,Hp} = {W,H} +{W, ls{v,T}} +{W, i82{{V,T},T}} -
2 12 + e errrmd TV} + eyl VTOV}

.7 +erryrd T(TV)? + e nrdV(TV)H) + -
from which we can identify (4.14
1 1 1 iltoni i
Haz H = STV} + —e2T TV = 2V AT + - For the separable Hamiltoniai2.5), these higher brackets
2 12 12 are
(4.8 {TT3V} = pip;pepiVijl,

This general result merely transcribes expressions of Lie
commutators into Poisson brackets. It is valid regardless of
the form of the Hamiltonian. For the separable Hamiltonian

{VT3V} = - 3pip; Vi Vi,

2 —
(2.5), we have specific results {T(TV)7} = = 2pi(Vig Vi + Vi Vi) by »
aT v 2 =2V,V, V. :
{T,V} = - 0')—{9— = — ijjv (4.9 {V(T\/) } 2V|V|]VJ (4.19
P;j 2q; The results in this section will allow us to analyze any sym-
plectic algorithm from second to sixth order. Beyond sixth
(T{T V}}__ﬂ_Tf9{T,V} V. 4.10 order, the number of Lie and Poisson brackets proliferates
T o e PiViiPy» ' and other means of determining the Hamiltonian error terms
may be more efficient.
N TV} .
VTV =22 - vy (4.11) V. HARMONIC OSCILLATOR: SECOND ORDER
aq; - Ip; INTEGRATOR

SinceT=T({p;}) andV=V({q;}), there is no ambiguity about To illustrate some of our key ideas in the simplest context,
the meaning of subscripts dh or V;. Also, sinceT;=g;, we ~ we will begin our study of the phase error with the second
therefore have order factorization scheme

1 1 1 Tyle,a) = e2TeVigh2eT, (5.0
Ha=H+ Espivi + 1—232in” p; + 1—2:-;2Vivi + e 2

(4.12

S e
In general, the algorithm’s approximate Hamiltonian is non- Vi=V+aedV[TV]]. (52
separable and more complicated than the original HamilClassically, this Lie commutator produces a modified force
tonian. A similar expression has been given by Yosh&lan [19]

terms opri, Hqiqj' etc. For a separable Hamiltonian of the P P

form (2.5), one can certainly writél'i:Hpi, and Vij:Hqiq_, [V,[T,V]]=2F,-—'—=Vi|F|2—, (5.3
etc., but the latter is not more general than the former. If the ; Ip; ap;

Hamiltonian is not separable, Yoshida’s expression suggesigsulting in the following more general second order sym-
a degree of generality beyond that of the formalism. It is bespjectic integrator:
to leave the form of the approximate Hamiltonian function in

terms of Poisson brackets, which is then valid for all Hamil-

with \71 given by

1
di1=0ot Espo,

tonians.
For higher order algorithms, the Hamiltonian operator
corresponding to any left-right symmetric factorization is P1=Po+ e[F(qy) + ae? V |F(qy)|?],

|:|A =T+V+ Sz(eTT\/[:rZ\A/] + e\/T\[m])

+ 84(eTTTT\[ﬁ3\A/] + e\/TTT\[\A/:f-S\A/])"' (eTTVT\[-i—(:i—\A/)Z]
Ve Here, (qo,po) and(g,,p4;) are the initial and final states of
+ V(TV)2) + -+, 4.13 0:+'0 2L . : .
Sl V(TV)D (4.13 the algorithm, respectively. The introduction of the gradient
whereerr, eyrrry €tc. are coefficients specific to a particu- term with parameter will allow us to satisfy the correct-
lar algorithm and where we have used the condensed conability criterion in its simplest setting. When applied to the
mutator notatiof T2V]=[T,[T,V]]. Note that for symmetric 1D harmonic oscillator with Hamiltonian

1
Q2:Q1+58p1- (5.9

decompositions, one has only even order commutators and p? 1

the Lie-Poisson correspondence is trivial. In terms of simi- H(d,p) = 5 + szqz, (5.9
larly condensed Poisson bracke{§?V}={T,{T,V}}, the

Hamiltonian function can be read off by inspection, the force gradient is just
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F(Q) = - wg — V¢[F(0)]* = 20%q. (5.6)

For the standard Hamiltonian, the approximation Hamil-

tonian operator for any symmetric factorization is given byThis is the fundamental thrust of our analysis: tracking the
Eq. (4.14. The nonvanishing error coefficients correspond-phase error of the algorithm back to its factorization coeffi-

A¢=(wA—w)T=2w<%—1). (5.15

ing to algorithm(5.1) are just cients. Observe now that from Eg&.12 and (5.13, we
have
IS ]
Crrv= oa’ eyTv= @ 12’ (5.7 wA(8)=w\5'(1+282w29TTv+ (L= 2520 Tyt o)
(5.16)
RN HETIERN
OTVIVE 480~ 240 TVIVT 1507 6% ' =w[1 +&%w*(erry—eymy) + O(%)]. (5.17

The Hamiltonian function is then as given by Ed.15. For In general,_the approximate frequency_ is second order_ in er-
the harmonic oscillator as defined by Eg.5), we haveV ror, as br—;f_lttmg.a ;econd order glgor¢hr_n. However, .n‘ the
=w25ij, Vij=0, (TT3V}=0, {VT®V}=0, and nonvanishing correctability criterion erry=eyry |s.sat|s.f|ed,_ t.henwA is
brackets fourth order. Moreover, if the algorithm is originally fourth

' order with erry=ey1y=0 then satisfying erryn=eytvry

{TAT,V}} = 0?p?, would makew, sixth order. Thus amth algorithm can have

an (n+2)th order phase error if its error coefficient satisfies
the correctability criterion. This is the key connection linking
the phase error with correctable algorithmislote that by

making erry=6,7v (but not zerg and erryr=eymy1v Would

VAT V) = - o',

{T(TV)?} = - 20*p?, not make the phase error sixth order.
With only one free parameter presently available, we can
(V(TV)2} = 2082 (5.9  only seterry=6,ry=—3; with the choice

Notice the clear separation between the contributions of the a= 1
algorithm, which are the error coefficients, and that of the 24
physical system, which are the Poisson brackets. The fin
form of the Hamiltonian function due to algorith(s.4) is
therefore

(5.19

%us makingw, fourth order. This particular value corre-
sponds to the well-known propagator first derived by Taka-
hashi and Imad#é26] for computing the quantum statistical

1 1 trace[26] to fourth order. The same factorization scheme,
Ha(g,p) = =p? + = 0?q? + w’c?(ernP? — eyrvw’qd) interpreted as symplectic corrector algorittif4), has also

2 2 been used by Lopez-Marces$ al.[13,14] and Wisdomet al.

- 20*e*(errymP? - eyryrw?d®) + -+ (5.10  [11] for solving classical and celestial dynamical problems.
With this choice ofea, the coefficient of the fourth order
frequency error is, from Eq$5.12), (5.13, and(5.8),

— 1 2 } * 2

_Zm*p +2kq. (5.11) w(4) |:1(wA >:|
= =2-1
] w

—=1im
Thus the oscillator being evolved by the algorithm is one @0

with an effective mass and spring constant, 4

w
= 20*(eyryrv— & rv—erv = - . (5.19
*_ oo N 2 2 4 4 -1 720
m =m(e) = (1+ 2= w%erry—4e"w erryryt =), o _
To gauge the relative importance of this phase error, let us
(5.12 ) ; . )
compare it to the energy error after one period. Since it is the
L, ) 5 42 5 modified, or approximate Hamiltonian that is conserved by
K =K (g) = (1-2s"0%y+4e 0 eyryryt - )07, the algorithm, i.e.,
5.13
613 HA(G.) = Ha(dio.Po), (5.20

from which one can deduce the approximate angular freg,e energy after one peridi= 27/ can be expressed as
ey = 2AH D) (2 AAH@B) (L2
< H(qTapT) - H(qOIpO) +e AHT (8 ) te AHT (8 )
K
oae) = [ . (5.14) +ePAHP (£2) + O(e?). (5.21)

From Eq.(5.10, we have in particular,
The phase error is simply related to the fractional deviation @ o__ 2 5 22 2
of the approximate angular frequency from the exact fre- AHT (89 =~ o” (€rrvP” ~ Pp) ~ & = 0=,
quency: (5.22
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AHW(£2) = 20* (erryrdP? = P2) — ey (P = G9)) |- Since the facto5.31) is common to all first derivatives
(5.23 (in £2), we conclude that foerry=eyty
M o) =
In order to compute these energy deviation errors, we must AHTT(0)=0. (5.32
solve forp(t) andq(t) according to HamiltoniarH: Hence forerry=eyry, the sixth order energy error can be
(q(t;a)) _( cog wat) (M wp) ™ sin(wAt))(qo) now computed as
p(t;e) ) \= (M wp)sin(wat) cogwpt) Po/’ £® = AH<2>,,(0) (5.33
(5.29

Sincem’ and w, are e>-dependent, each functiahH™(&?) o 6 2_ 22
: =2mw [ 2m(p2 - w?ed) - +
contains further dependence e We now define the con- me12m(py :) %) poqo:)](eﬁv &
stant energy error coefficien&” via X(erry=eyrv)” — 4mPlow’ (Erry + 8yt
,

H(ar.pr) ~ H(Go,po) = AEr = o%E¢ + o'E¢" + o°EY X[2(errvrv= ey + Einy+ imd = 5Pt

+ 0(88), (5.25

where, for example, we have (534
The above calculation demonstrates the general property
E<T2) = AH%Z)(O), of the energy deviation error after one period. For correctable
algorithms, the first two terms in the error expans{ér26)
EW = AHW(0) + AH?(0), vanish identically, which means that to comp&®’, one

need not know the explicit formAH 6)(82) However, in or-
der to computeAH(z)"(O) one must known' () and wa(&?)
accurately toO(s“) which means knowing the fourth order
Hamiltonian error function, oAH( )(82) Thus although Eq.
(5.33 makes no reference tAH! )(82) one must know it
implicitly. Similarly, E(B) can be Computed fronAH(z)(sz)
(5.26) andAH W(s2) via

1
E® = AH®(0) + AH"(0) + EAH(TZ)"(O),
1 1
E'(|'8) — AHEI_8)(O) + AH_(I_6)/(O) + EAH%_@N(O) + EAH%_Z)///(O).

Here, the prime denotes derivative with respectsfo From ®) _ (4),, 2m
the form of eachAH(T”)(sz), sincee=0 implies thatw,=w, Er = 2 (O)+ AHT(0). (539

T)=po, andq(T)=qy, we must have .
P(T)=Po a(T)=Go However, in order to computéH(z) (0) one must know

AHP(0) =0, (5.27  AH@(&?) correctly toO(£8). This would again require know-
ing the sixth order error Hamiltonian a&H©(&?). In gen-
) eraI,E(T”) can be computed two orders beyond the accuracy of
EP =0. (5.28  knowing the Hamiltonian.
Thus for periodic motion, despite the fact the algorithm is To summarize, for a second order algorithm, the energy

only second order, the energy error is actually fourth ordetafter one.peno_d is automatically fourth orderan(:At)._ I .
after one period. the algorithm is correctable, then the energy error is sixth

The fourth order energy error is given by order. For special initial conditiong=0 orqy=0, by solving
the algorithm exactly in the case of the harmonic oscillator

and therefore

EW = AHP"(0) = - 20? (ermyPrP} — v 00| o=o [28], one can show that the energy error is actually tenth

= 4By _ ) + ) (5.29 order. This last error reduction only occurs for the harmonic

7@ PodolCrrv T vtV (Errv T Bvrv), ' oscillator. Nevertheless this further emphasizes that the en-

where we have used ergy error after one period is not a very good gauge of any
integrator’s accuracy. On the other hand, the phase error, as

q'(T;0) = lpow,&(O)T andp’(T;0) = - wqowa(0)T, reflected in the fractional change of the oscillator’s angular

frequency, can at most be fourth order and is a much more
(5.30  stringent and discriminating benchmark.

and from Eq.(5.17, VI. HARMONIC OSCILLATOR: FOURTH ORDER
wp(0)T = 27w?(erry—€yny). (5.3 FORWARD INTEGRATORS

The fourth order error now vanishes if the algorithm satisfies Beyond second order, all symplectic algorithms of the
the correctability criteriorery=eym. Thus for acorrectable  form (2.10 must have some negative intermediate time steps
second order algorithm, after each period, the phase error [29-31]. This means that at some intermediate time, the al-
fourth order and the energy error is sixth order. gorithm is moving the phase trajectory backward in time. For
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classical mechanics, which is time-reversible, these negativg, = q; + stgps, (6.5

time steps are harmless. However, for solving time-

irreversible problems, such as the diffusion or Fokker-Plancikvhere(do,po) and(ds,ps) are the initial and final states of
equation, backward time step evolution is not possible. Theste algorithm, respectively. The parametecan be changed
systems can only be solved fiyrward decomposition algo- from 0 to 1, but there is really no restriction on its range.
rithms, with all positive, even intermediary, time steps. Somé/Vhen applied to the harmonic oscillator, the paramatean
fourth order forward algorithms have been derived recentlyoe used to correct the algorithm to sixth order. The parameter
for solving a variety of time-irreversiblg32,33 and time-  tp can be varied from 0 tQ:%(l—ll\s“B)zO.Zl- Forty,=0,
reversible[19,21,22 equations, both with excellent results. the final force evaluation can be reused at the next iteration,
Beyond second order, purely forward time steps are possibléaus eliminating one force evaluation. At the upper limit of

only if one includes the commutatpv,[T, T]] in addition to t0=éc, v2=0 also eIi_minate; Or:‘e f(l)rce_ Evaluation. E@i)tc, f
operatorsT andV in the factorization process. In this work °2 ecomes negative, and the algorithm ceases 1o be a for-

. . ward algorithm.
we will apply these fourth order forward algorithms to study Our analysis of the second order algorithm can now be
the phase problem of periodic motion. In this section, we

repeated verbatim for the fourth order case. The approximate
SHamiltonian operator corresponding to any symmetric fourth

of these fourth order forward algorithms. order algorithm is of the form

Chin and Chei21,22 have introduced a family of fourth
order forward algorithms ACB parametrized by a parameter
to- We use here a slightly generalized form by multiplying
the central commutator by lo-and addinga/2 times the + erryn I T(TV)2] + ey ryn [ V(TV)2]) + O(£P).
commutator to each potential operator on each side. The re-
sulting algorithm has the operator form

Ha=T+V+e4errrmf TTV] + eyrrrf VTV]

(6.6)

T (e, 0) = etos%ev18\71et15%evzs{/Ztha%evlsfxletos%, 6.1 For the harmonic qscillato[,T?’V]:O, and the first two error
terms vanish identically. The evaluation of the last two error
where coefficients for the family of fourth order algorith(6.5) is
nontrivial and is given in the Appendix. The corresponding
Sy, YUy o 2 Hamiltonian function, after recalling the Poisson fof#n15
Vi=V+——¢TV,[T,VI], N
! vlg VTV and bracketg$5.9), is

/. =\ YRy _p_z 1 o2 o oaa 2_ 2 2
Vo=V + (1 - ) 262V, [T,V]], 62  HAGP)= T+ S0 - 20t ermmp? - o)
U2

+ o (67)

u—i 1- ! + !
071207 1-2t, 6(1-2t)3)

(6.3

1, 1,
= * +_k 21 .
o P T 5ka (6.8
and
with
1 1 1

=5t vﬁgm, v,=1-20,. (6.4

m =m () = (1 - 4de’werryry+ --+)7, (6.9
The corresponding forward symplectic integrator can be read c ox
oft directly ik ymp 9 K =K (e) = (1 + 4’0 emyryt ++),  (6.10

and approximate frequenc
d1=do+ etpPo, P q Y

wp(e) = w\”’(l + 484(‘)4Q/TVTV+ (1 - 4£4w4eTTVTV+ o)

a
P1=pPote UlF(Q1)+EU082V|F(Q1)|2 , (6.11)

=o[1+ 2w eyryrv—ernmy + 0(e%)].  (6.12

Again, one immediately sees that if the sixth order correct-
ability criterion

02=d1 + &typy,

P2 =P1+e[vaF(02) + (1 = @)upe? V [F(go) ],

evTvTV= erTvTV (6.13
O03=0Q, t+ etypy, ) - . )
is satisfied, therw, will be sixth order. Note that we now
u have
=py+e| v1F(dz) + -Ue? V [F(qa)|? |,
P3=pP2+ el v1F(Qs) > 0e” V |F(as)| OATloe0=0,
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pTle=0 = 4w (Erryrv=8vrvTy. (6.14 I I I I
where primes still denote derivative with respectsto The 1.2x10°+ 1
conservation ofH(q,p) again implies that the energy devia- I
tion after one period can be expressed as N
8.0x10° + .
H(gr,pr) = H(go, Po) + s*AHY (62) + £PAHP (?) . \ o~
AN
+ eBAHP (£2) + 0(e19), (6.15 :i a0x10°} o e ]
with ' \/
4.2y = o 4 2_ 2 2(2 _ 2 0.0
AHP (%) = 20* (ermvTdP” = PY) — &y (” = Gg)) |i=T-
(6.16 .
-4.0x10° 1 . . . .
The constant energy error coefficierﬁg') defined by 0.00 0.05 0.10 015 0.20 0.25

H(dr.pr) = H(do,po) = AE7 = 2°E + 2°EY) + °E o
+ g10g(20 4 0(812) (6.17) FIG. 1. The sixth order angular frequency error as a function of
T the algorithm’s parametey,.
are now of the form
@) — A4 ©®
Er’ =AHT(0), 2| =7.71862131705785% 107w®, (6.22)
@ |min
E® = AHP(0) + AHP'(0),
att;=0.12129085056575276, and a pole at
1 —
E§r8) - AH-(FB)(O) + AH%—G)’(O) + —AH%-“)"(O), . tg=0.13882413776781183.
2! Note that outside of the forward range, the error can actually
vanish att;=0.24265927253055103.

1 1 The eighth order energy deviation error after one period is
Ef%= AH{?(0) + AHP (0) + EAH(TG)”(O) + EAH(T“)”’(O).

(6.18 AEP = 1670 (fry1v— &57vr)doPo. (6.23
Now, because of Eq6.14), for erryrnv=€ytvry NOt only do
we haveAH(T'”(O):O, but also which again vanishes f@ryrv=ey1ytvOr €rrvTv=—evTvTy
0 (o analogous to the second order case.
AHY"(0) = 0 andAH:""(0) = 0. (6.19 Thus for a corrected fourth order algorithm, the first non-

zero energy deviation error is tenth order. This is plotted in
Fig. 2 scaled such that=qgy=py=1.

E<T4> = E(TG) = E(TB) =0, (6.20 Within the forward range of &t,<0.21, the tenth order
energy deviation error has a minimum of value

This implies that

and the first nonvanishing energy error is tenth order,

1 3.0x107 ———— 7T
EX= EAH(T“)”'(O). (6.21)
' 2.0x107 -+ :
However, as noted in the last section, in order to compute
this, one must determine the sixth order error Hamiltonian. 4 o 4071 ya _
Due to the complexity of the algorithm, these higher error I e

terms are difficult to compute by Lie series. However, they %.J_

can always be computed using the matrix meth28]. For g %
brevity, we will skip over the details and just report the final ,
results. -1.0x107 ya
We have shown earlier that the fourth order phase error T /
term will vanish if e;ryrv=eyrvryv FOr a given value ofy, -2.0x107 +
this criterion can now be satisfied by a specific choicerof T
given bya=a(ty) in Eq.(A12). Using this functional form to 3.0x107 ' ' : :
eliminate « in terms of t,, the sixth order error term 0.00 0.05 o0 015 020 025
w®/w=1(ty) scaled such thab=1, is plotted in Fig. 1. °
Within the forward range of &t;<0.21, the sixth order FIG. 2. The tenth order energy deviation error after one period
frequency error has a minimum of value as a function of the algorithm’s parametgr
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AER?|in= - 1.3398713813012635 10 %w!'gep,, 10 — T -
(6.24) 05 ] ; ; _________ Ml
-0 ‘ . . .............. O |
at 1,=0.12482248354859667 and a pole at, ] o~ =M
=0.13882413776781188same as in the frequency cask ] S AL/ NS P
both cases the error term vanishes at the same value, i.e., - ™= 4 / \\J |
tp=0.24265927253055103, outside of the forward range. umf’ 5 I\
(Note also that this error term vanishes for a special starting 057 \ ! T
value of pp=0 or qy=0. It can be shown that for eithqx =4 1 N / \ /
=0 orgy=0, the first nonvanishing energy error term is 16th -1.04 “'-\,_\ 1 \ / .
order, again demonstrating that the phase error dominates ] Vo L
overwhelmingly over the energy errpr. 154 \‘ /j V o/ ]
N/ NS
VII. THE 2D KEPLER PROBLEM 0490 0495 0%00 0505 0510

In light of our previous discussion, for long-term trajec-  FiG. 3. The energy error at half a period for an eccentricity of
tory simulation, one must judge all symplectic algorithms ong g,

how well they minimize the phase errors rather than the en-
ergy error. In this section, we will examine Keplerian mo-

. ; . L 1
tions in 2D defined by the Hamiltonian H,(q(t),p(t) = lim TE[E(q(t)’p(t)) -E] (7.5
e—0 € g
1. 1
ARPLET 7D inFig. 3,

_ _ . Note that this is an intrinsic function characteristic of each
Here, our analysis of fourth order algorithms will not be asalgorithm independent of the step size. We compute this
extensive as in the harmonic oscillator case because the afamction by finding the energy deviation from the initial en-

proximate Hamiltonian ergy along the orbit and then dividing it by*. As & gets
A . A A smaller and smaller, this function converges to its limiting
Ha=T+V+ e (errrnlTTV] + eyl VTV] form. The functional form is basically unchanged fer
PO sas s 6 =<T/3000, whereT is the period of the Keplerian orbit. All
*+ernnd T(TV)7] + ey V(TV)7]) + O(&”) results shown in Fig. 3 are computed witk T/5000.
(7.2 Since we have shown th&(q(T),p(T))-Ey=0(£®), H,

. vanishes exactly after one period. Thus each energy error
can no longer be solved analytically. The operdt®?V]  curve of Fig. 3 reverts back to zerotatT. This is a charac-
#0 and while we can still forceerrymv=€yryry a@s in the teristic behavior of all symplectic algorithms. Nonsymplectic
harmonic oscillator case, we have no way of ensuring thaRunge-Kutta algorithms do not have this property and their
errrm~=evrrrv Currently, there are no known fourth order energy deviation error accumulates rather than vanishing af-
forward symplectic algorithms that can be corrected to sixthter each period. However, even for symplectic algorithms,
order. Nevertheless, identical analysis as in the harmonic oshe energy deviation error is nonvanishing at other times.

cillator case shows that Here, due to the high eccentricifg=0.9 of the orbit, the
@ @ energy error is at a maximum near midperiod. Algorithm
Ey’=AH(0) =0, (7.3 Chin-C(C), is the forward algorithn{6.1) with t,=1/6 and

and the energy error after one period must be at least sixtﬁtio’ first deriveoclj ('jn[l?\]/l Elar;]elzs-Mozn(Bl\_/l) isl, an algo-
order. Thus if fourth order algorithms are used to solve!'tNM recommended in VicL.achlan an Quispel's reviéh

Keplerian orbits, it is more fitting to examine their fourth Omelyanet al. [25] (O) is a recent alternative forward algo—
order phase errors instead. rithm that uses the same force gradient defined by(&®);

For two-dimensional motion, there are two basic phas%CLaChlan[S] (M) is a greatly improved \(ersion of the _first
angles associated with the two sets of canonical variable urth order Ruth-Foreg®3] algorithm. With the exception

. f M, all algorithms have comparable error height at midpe-
(g91,p1) and (g,,p,). A convenient measure of these phaseo_ . . )
errors is the precession error of the orbit in the, ) plane, riod. Note, however, that BM requires six force evaluations,

which can be tracke@20] by the rotation of the Laplace- M uses fogr force eva}luanons, O uses four force plus four
force-gradient evaluations, but C uses only three force and
Runge-LenZLRL) vector

one force-gradient evaluation. Algorithm M’s error height
A=pxL-§. (7.4) reaches up to 14, which is more than 20 times higher. This is
rather surprising, since algorithm M works very well in solv-
In the above definitionl. =g X p is the angular momentum ing quantum mechanicgP1,34 and three-body22] prob-

vector. lems.
To see how various algorithms compare, we first plot the In Fig. 4 we track the rotation of the LRL vector during
fourth order energy error function defined by orbital motion. If the orbit is exact, the LRL vector is a
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0.04+ //\ 0.6 c .
e S~ ] 1 |
0.00 VAR 0.4 Copt ]
\ / ;7
A ]
-0.044 \// | 0.24 .
P O > 0.0
T -0.08- - 1 ]
[=] o
T = 0.2 4
-0.12 - 1
—C 0.4- .
--------- BM ]
-0.164 |- o] T -0.6- J
0.490 0.495 0.500 0.505 0.510 0.490 0.495 0.500 0.505 0.510
0 ) . 20 . .

FIG. 4. The precession deviation error after half a period for

A ! - / FIG. 5. The precession deviation error after half a period for
eccentricity 0.9 with starting poirg=(10,0 andp=(0,0.D.

eccentricity 0.936 with starting poimi=(10,0 and p=(0,0.08.

constant vector pointing along the semimajor axis of the orb5, with {;=0.166160 andx=0. The angle error after one
bit. If the orbit precesses, then the LRL vector rotates accordperiod is further reduced by a factor of 5 from 0.0360 to
ingly. At any point in the orbit, the angle of the LRL vector 0.0077.

is given by While one can optimize the family of algorith(6.1) for
any one specific problem, or at one eccentricity, it is of
greater value to devise an optimal algorithm for solving a
LA general class of problems. For the Kepler problem, all pos-
ot) = tan 1{—Y—A (t)} = '0,(t) +£%05(t) + -+, (7.6)  sible shapes of closed orbits are spanned by the eccentricity:
X

it is thus more desirable if one can devise an optimal algo-
rithm for all values of the eccentricity. In Fig. 6 we plot the
from which one can extract the fourth order angle errorfunc-LRI.‘ rotation angle after one period as a fur?cfu_on of the
tion via ?rblt’s eccentricity, as determined by different initial condi-
ions.

Most algorithms work well for orbits of low eccentricity
and the rotation angle is correspondingly small. We therefore
compare algorithms a¢=0.9. At e=0.95, the angle error
values for M, BM, O, and C are, respectively, —166.1870,

—-4.8865, —10.4470, and 0.1244. Algorithm C’s angle error is

1
64(t) = lim = 6(t).
e—0 €

(7.7

orders of magnitude smaller than other algorithms.

Again, this intrinsic function is computed in the limit of

In Fig. 7 we again show that a better algorithm can be

smalle. We have checked that it has indeed converged to it§evised from the family of algorithm6.1). The choice of
limiting form for £=T/5000. Since the orbit precesses the@=0 (only one force-gradient and t,=0.166160 (only

most when the particle is closest to the attractor, the LRL

vector rotates measurably only during midperiod. It is con- 2 T ' T

stant before, and remained constant after, the midperiod.

Thus the rotation after one period is essentially the same as

the rotation shortly after midperiod. Note that tHghase 2] 1
angle erroidoes notrevert back to zero after each period, but .

accumulates after each period even for symplectic algorithms 4. ‘ |
regardless of order. Thus the only way to minimize this o B
phase error is to make it as small as possible. From Fig. 4 we + 6. .
see that algorithm C's rotation angle after midperiod in

nearly an order of magnitude smaller that that of either BM -84 | gM \ .
or O. The actual values after one period are 0.0076, -0.0692,  { | o \
and -0.1466, respectively. Algorithm M’s rotation function 109 | m \
reaches down te=-2.5, which is an order of magnitude . \

greater than that of BM and _O and two orders of_magnltude 0.90 061 0.2 0.5 0.0 0.95
greater than that of C. We did not bother to plot it. Eccentricity

Since parametery and « are at our disposal, we can

further optimize the family of algorithng6.1) to reduce the FIG. 6. The precession deviation error for highly eccentric
rotation error. The resulting optimal choice is shown in Fig.orbits.
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0.14 T T T T ization coefficients via MATHEMATICA program[32]. They
o1zl /—c are
--------- C-opt
0.10 op er=2ty+ty), (A1)
0.08 ey=(2v,+vy), (A2)
o 0.06 )
M 1 1
2 0.04- , 7 . erry=-— g[ti(— Qv+ v,) +15(201 + V) + 2tety (201 + vy)],
0.02 4 1 (A3)
0.00
1 1
-0.02 r T T . vty = =[6Ug — to(2v1 + v)? + 1,(20% + 200, - v3)],
0.90 091 0.92 0.93 0.94 0.95 6

Eccentricity ( A4)

FIG. 7. The precession deviation error for highly eccentric
orbits. i

errrrv= 360[7'[3('(0 +4t1) (201 +vy)
slightly below the canonical value a§=1/6), produces an + 84t + 1) (70, — 1604) + 6t22%(4v, + 7
algorithm with uniformly small phase error up ¢s0.95. At (4 + 1) (702 J o401+ 7o),
e=0.95 the angle error value for Opt-C is —0.00357, com- (A5)
pared to C’s value of 0.12363.
1
= —[2t5(to+ 3ty) (201 + v,)? — Bt (6vF + Vv, — v
VIIl. CONCLUSION evTTTV 90[ oto + 3t1) (201 +vy) ot1(6v] +v1vy —v3)
In this work we showed that for periodic motion, the en- +13(8v% ~ Tv, + 23], (A6)
ergy error after one period is generally two orders higher
than that of the algorithm. If the algorithm is correctable, the 1 4 5
phase error can also be reduced two orders higher. The use of €rrvrv= 6_0“0(201 +0v2)
fourth order forward time step integrators can result in sixth

order accuracy for the phase error and eighth accuracy in the +t§(10(3a ~ Dug + ty(~ 1603 + 4v v, +03))
periodic energy. By generalizing the recently discovered one- +12(= 10Un+ t: (202 + 2 +3p2

parameter family of fourth order symplectic algorithf2d], ol o+ (203 + 20102+ 3v))

we can minimize the energy and phase error to even higher +toty (= 20U + 1 (1205 + 2010, + 3v3)], (A7)

order. The results of this study provide a direct verification of

Chin’s correctability criteriorf16] for correcting a symplec- 1, 3

tic algorithm to higher order. In particular, we showed that evTvTV= &)[Zto(zvl"'vz)

the correctability criterion is superior to the conventional

wisdom of minimization of the sum of squares of error co- = 4to(201 + v) (BUg + t1 (V3 + V12 — V3))
efficien.ts.'The most important conclgsion of this. Wo_rk 'is that +t,(10ug[ 20, + (3 = 2)u,]

for periodic motion, the phase error is a more discriminating

gauge of an algorithm’s effectiveness than the energy error. —t1(4vf + vfuz + 3vlv§ - 2v§’))]. (A8)

As a more important application of the phase error analy-

sis, we track the orbital precession angle of the 2D Keplerln _ord?rlf(;rnghe algorlthTotoTaee;gufgﬁro(r:(;igt\r/;iengucs;nh%\;e
problem by monitoring the rotation angle of the LapIace—eT_eV_ Errv=&urv=0.

Runge-Lenz vectof20]. By comparing with various recent satisfied by
fourth order algorithms, we demonstrated the uniqueness of 1 1
the forward symplectic algorithm in minimizing the phase L=6k=5"% 1=l viZvs= 61— 22" (A9)
error of this important class of celestial mechanics problems. 0
=1-(vy+vg), U= L 1 SR !
ACKNOWLEDGMENTS vy= vi*vy), U= T
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This is the family of fourth order algorithm&.1) with pa-

APPENDIX: FOURTH ORDER ERROR COEFFICIENTS rametersty and a. For the harmonic oscillatogrrrry and
eyrrTy vVanish identically. A fourth order algorithm can be
The error coefficients of the fourth order forward algo- corrected to sixth order if one can s&tyr~eyryr Sub-

rithm (6.1 can be computed in terms of algorithm’s factor- stituting Eqs.(A9) and (A10) into Egs.(A7) and(A8) gives
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errvty and eyryty as functions of the parametetig and «,
ie.,

1+5a—12t[1 + 5a + 20aty(— 1 +1p)]

errvrv= 28801 - 2to) ,
1+10x- 6t0(3 + 30w - to{g + 21 + 8t0[1 - 85w - 3t0(1 - 4Q0n + ZOatO)]})
eyTvTV= 7 . (A11)
43201 - 2tp)
Solving for errymv=eyryry determinesy as a function oty
1 + Gto{_ 3 + 4{0[6 + to(_ 23 + 240)]} (Alz)

7 B[ - 12(1 - 29)2][1 - Big(1 + 2 - 4D)]°

However, there exists no real solution of the parameters for whichdygth, ande,y1ycan be set to zero, i.e., we can have
an algorithm that is correctable to sixth order, but not a real sixth order algorithm.
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