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We show that when time-reversible symplectic algorithms are used to solve periodic motions, the energy
error after one period is generally two orders higher than that of the algorithm. By use of correctable algo-
rithms, we show that the phase error can also be eliminated two orders higher than that of the integrator. The
use of fourth order forward time step integrators can result in sixth order accuracy for the phase error and
eighth order accuracy in the periodic energy. We study the one-dimensional harmonic oscillator and the
two-dimensional Kepler problem in great detail, and compare the effectiveness of some recent fourth order
algorithms.
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I. INTRODUCTION

Symplectic integratorsf1–5g preserve Poincaré invariants
when integrating classical trajectories. For periodic motion,
their energy errors are bounded and periodic, in contrast to
nonsymplectic Runge-Kutta type algorithmsf6g whose en-
ergy error grows linearly with the number of periodsf7–9g.
Energy conservation alone suggests that symplectic algo-
rithms are a better long-time integrator of classical motions.
However, for periodic motion, even symplectic algorithms
are not immune from the linear growth of the phase error
f7–9g. Whereas the energy error is the error of theaction
variable, the phase error is the error of theanglevariable. Of
the two, the phase error is even more important in determin-
ing the long-term accuracy of trajectories. For example,
when symplectic algorithms are used to compute the
Keplerian orbit, the elliptical orbit is easily seen to precess.
The precession is of nearly constant radius. Since the semi-
major axis of the ellipse is fixed by the initial energy, the
constancy of the precession radius implies excellent energy
conservation. Yet in spite of that, the precession itself implies
that the trajectory is highly inaccurate. This orbital preces-
sion is a direct manifestation of phase error. Thus to preserve
the long-term accuracy of periodic trajectories, despite the
primacy of energy conservationf10g, one must seek to re-
duce the phase error directly.

For periodic motion, the only error that matters is error
that persists after one periodf9g. A fundamental finding of
this work is that, for periodic motion after one period, the
energy error is at leastsDtd2 times that of the phase error,
where Dt is the time step size used. Thus at smallDt the
phase error is the dominant error governing the long-term
accuracy of periodic motion. Moreover, we show that the
phase error of the symplectic correctorf11–15g kernel algo-
rithm is sDtd2 times the phase error of other algorithms nomi-
nally of the same order. Recently, one of usf16g has made
explicit the “correctability” requirement in deriving a cor-
rectable kernel algorithm. This criterion determines the opti-
mal symplectic algorithms for solving periodic motion. The
corrector algorithm has its origin in canonical perturbation

theory f17g. It has been studied extensivelyf11–15g for its
labor saving feature of only having to iterate the kernel al-
gorithm. Here we draw the connection between symplectic
corrector algorithms and the phase error in periodic motion.
Much of our analysis is analytical rather than numerical, so
that one can understand the result in a transparent way. We
also found thatforward time step symplectic algorithms
f18–22g generally have much smaller phase errors than tra-
ditional algorithms with backward intermediate time steps
f3,5,23–25g.

In this work, we will analyze in detail the two fundamen-
tal prototypes of periodic motion: the one-dimensionals1Dd
harmonic oscillator and the two-dimensionals2Dd Kepler or-
bit. We are not interested in solving the harmonic oscillator
per se, but only in using it as a vehicle for understanding the
phase error and the working of our algorithms. It is only with
such a simple model that we can show analytically how the
phase error can be reduced by fine-tuning the algorithm. To
the extent that harmonic motion is the simplest periodic mo-
tion, this is clearly a necessary first step for proposing any
scheme of phase error reduction. In the 2D Kepler case, we
demonstrate the usefulness of forward symplectic algorithms
as compared to existing negative time step algorithms. For
completeness, we begin with a brief review of the operator
construction of symplectic algorithms, followed by a synop-
sis of symplectic corrector algorithms. In Sec. V, we illus-
trate the basic idea of our analysis by showing how a second
order algorithm can achieve fourth order accuracy in the
phase error when solving the 1D harmonic oscillator. In Sec.
VI, we repeat the same analysis for a class of fourth order
forward algorithms. Error terms up to eighth order are com-
puted by use of the Lie seriesf27g expansion. Beyond eighth
order, the error terms can be determined by exactly solving
the matrix model. All these are done analytically. We repeat
the analysis for the Kepler problem in Sec. VII. Here, we
compare the phase error numerically for a number of recent
fourth order symplectic algorithms. We summarize our con-
clusions in Sec. VIII. For the reader’s convenience, some
lengthy formulas and explicit calculations are given in the
Appendix.
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II. OPERATOR FACTORIZATION

Symplectic algorithms can be derived most simply on the
basis of operator factorization.sSee the excellent review by
Yoshidaf2g and earlier references therein.d For any dynami-
cal variableWsqi ,pid, its time evolution is given by the Pois-
son bracket, and therefore by the corresponding Lie operator

Ĥ associated with the Hamiltonian functionHsqi ,pid, i.e.,

dW

dt
= hW,Hj ;

]W

]qi

]H

]pi
−

]W

]pi

]H

]qi
s2.1d

=S ]H

]pi

]

]qi
−

]H

]qi

]

]pi
DW= ĤW. s2.2d

sRepeated indices imply summation.d More generally, for
any dynamical variableQ, we can define its associated Lie

operatorQ̂ via the Poisson bracket

Q̂W= hW,Qj. s2.3d

As we will see, this fundamental operator mapping underpins
the entire development of symplectic integrators.

The operator equations2.2d can be formally solved via

Wstd = etĤWs0d. s2.4d

Symplectic algorithms are derived by approximating the evo-

lution operatoretĤ for a short time in a product form. For
Hamiltonian function of the standard separable form,

Hsq,pd = Tspd + Vsqd, with Tspd =
1

2
pipi , s2.5d

the Hamiltonian operators2.2d is also separable,

Ĥ = T̂ + V̂, s2.6d

with first order differential operatorsT̂ and V̂ given by

T̂ ;
]T

]pi

]

]qi
= pi

]

]qi
, s2.7d

V̂ ; −
]V

]qi

]

]pi
= Fisqd

]

]pi
. s2.8d

Note thatĤ, T̂, andV̂ individually satisfy the defining equal-
ity s2.3d.

The corresponding Lie transformsf27g e«T̂ and e«V̂ are
then displacement operators which shiftqi andpi forward in
time via

q → q + «p andp → p + «F. s2.9d

Thus, ife«Ĥ can be factorized into products of Lie transforms

e«T̂ ande«V̂, then each factorization gives rise to an integrator
for evolving the system forward in time. Most of the existing
literature on symplectic algorithms is concerned with decom-

posinge«Ĥ to arbitrarily higher order in the product form of

e«sT̂+V̂d < p
i=1

N

eti«T̂evi«V̂, s2.10d

with a well-chosen set of factorization coefficientshti ,vij. In
most cases, we will consider only the left-right symmetric
factorization schemes such that eithert1=0 andvi =vN−i+1,
ti+1= tN−i+1, or vN=0 andvi =vN−i, ti = tN−i+1. In either case,
the algorithm is exactly time-reversible, and the energy error
terms can only be an even function of«. Such a symmetric
factorization is then at least second order. As first proved by
Shengf29g, and Suzukif30g, beyond second order, decom-
positions of the forms2.10d must contain some negative co-
efficientsti andvi. Goldman and Kaperf31g further proved
that beyond second order, there must be at least one pair of
negative coefficientssti ,vid. To circumvent this backward
time step restrictionf18,19g, one must factorize the evolution

operator in terms of operatorsT̂, V̂ and the commutator

fV̂,fT̂,V̂gg. In this work, we will further demonstrate that
these forward symplectic algorithms are also effective in re-
ducing the phase error.

III. SYMPLECTIC CORRECTOR ALGORITHMS

To see the relevance of symplectic corrector algorithms to
periodic motion, we recapitulate some recent resultsf16g.
Let TA be a symmetric, approximate factorization of the short

time evolution operatore«sT̂+V̂d,

TA = p
i=1

N

eti«T̂evi«V̂ = e«ĤA, s3.1d

then the approximate Hamiltonian operatorĤA must be even
in «, i.e.,

ĤA = T̂ + V̂ + «2seTTVfT̂,fT̂,V̂gg + eVTVfV̂,fT̂,V̂ggd + Os«4d,

s3.2d

with error coefficientseTTV, eVTV determined by factorization
coefficients hti ,vij. Consider the similarity transformed
propagator,

TA8 = STAS−1 = Se«ĤAS−1 = e«sSĤAS−1d = e«ĤA8 , s3.3d

where the last equality defines the transformed Hamiltonian

ĤA8. If we now take

S= expf«Ĉg, s3.4d

where Ĉ is the corrector, then the following fundamental
result

ĤA8 = e«ĈĤAe−«Ĉ = ĤA + «fĈ,ĤAg +
1

2!
«2fĈ,fĈ,ĤAgg + ¯ ,

s3.5d

implies that

S. R. SCURO AND S. A. CHIN PHYSICAL REVIEW E71, 056703s2005d

056703-2



ĤA8 = T̂ + V̂ + «2seTTVfT̂,fT̂,V̂gg + eVTVfV̂,fT̂,V̂ggd

+ «fĈ,T̂ + V̂g + ¯ . s3.6d

One immediately sees that the choice

Ĉ = «cTVfT̂,V̂g s3.7d

would eliminate either second order error term withcTV

=eTTV or cTV=eVTV. More importantly, if ĤA is constructed
such that

eTTV= eVTV, s3.8d

then both error terms can be eliminated by the corrector.
Thus for such an approximateTA, the transformed propagator
T A8 will be fourth order. This is the fundamental “correctabil-
ity” requirement for correcting a second orderTA to fourth
orderf16g. In general, the corrector can be more complicated
than the kernel algorithmTA. However, when one iterates
T A8, all intermediate correctors cancel and only the initial and
final corrector remains. For periodic motion, even the initial
and the final corrector would have cancelled after exactly
one period. Hence even ifTA is only second order, if it sat-
isfies the correctability requirements3.8d, then its error after
exactly one period would be fourth order. Thus among all
second order algorithms, those that are “correctable,” i.e.,
satisfy the the correctability requirements3.8d, would be two
orders better. With a correctable algorithm, we will show
later that the phase error is improved intrinsically even with-
out applying the corrector. However, if the step size« is not
commensurate with the period, one may step over the mini-
mum of the error function without knowing that it is there. In
this case, it is essential to apply the corrector just prior to
computing any observable. The advantage of a corrector al-
gorithm is that for long-time integration, one usually only
needs to apply the corrector sparingly at a few selected
points in time.

This correctability requirement can be generalized to

higher order. At higher orders,ĤA will have error terms of

the formfT̂,Q̂ig andfV̂,Q̂ig, whereQ̂i are some higher order

commutators generated byT̂ andV̂. If ĤA is of order 2n in «,

thenHA8 can be of order 2n+2 if ĤA’s error coefficients for

fT̂,Q̂ig and fV̂,Q̂ig areequal for eachQ̂i. This is the funda-
mental corrector insight off16g. In the following sections,
we will demonstrate how this insight can be used to reduce
the phase error in practical applications.

IV. THE MODIFIED HAMILTONIAN AND ERROR
STRUCTURE

The distinct advantage of symplectic algorithms is not
only that they preserve all Poincaré invariants, but that their
corresponding modified Hamiltonians and error structures
can be systematically determined. This is of paramount im-
portance when one seeks to understand the fundamental
cause of an algorithm’s error. To illustrate the approach, we
begin by analyzing the simplest, first order factorization,

e«T̂e«V̂ = e«ĤA, s4.1d

whereĤA is the approximate Hamiltonian operator

ĤA = Ĥ +
1

2
«fT̂,V̂g +

1

12
«fT̂,fT̂,V̂gg −

1

12
«fV̂,fT̂,V̂gg + ¯

s4.2d

of the algorithm. This follows directly from the Baker-
Campbell-HausdorffsBCHd formula. Thus the algorithm
evolves the system according to the modified Hamiltonian

ĤA rather than the original HamiltonianĤ. Nevertheless, the
Hamiltonian structure of the system is preserved. As«→0,

one recovers the original dynamics. Moreover, knowingĤA
allows us to determine the actual Hamiltonian functionHA
which governs the algorithm’s evolution. This can be done
systematically by use of the Lie-Poisson bracket correspon-
dence. To make this part of the discussion self-contained, we
briefly summarize some pertinent results.

From the fundamental defining equalitys2.3d, we can de-
duceHA via

ĤAW= hW,HAj, s4.3d

if we know how commutators ofT̂ andV̂ transform back into
functions under the operator mappings2.3d. By repeated ap-
plications of Eq.s2.3d, we have

fT̂,V̂gW= T̂hW,Vj − V̂hW,Tj = hhW,Vj,Tj − hhW,Tj,Vj

= hW,hV,Tjj, s4.4d

where the last equality follows from the Jacobi identity

hhW,Vj,Tj + hhT,Wj,Vj + hhV,Tj,Wj = 0.

Equality s4.4d implies the following correspondence between
commutators of Lie operators and Poisson brackets of dy-
namical variables:

fT̂,V̂g → hV,Tj = − hT,Vj. s4.5d

There is thus an order reversal, or a simple sign change, in
going from Lie commutators to Poisson brackets.sThere is
no such order reversal in the usual correspondence between
quantum mechanical commutators and Poisson brackets.d
This order reversal will only change the sign of odd-order
brackets, as illustrated in the following examples:

fV̂,fT̂,V̂gg → hhV,Tj,Vj = hV,hT,Vjj,

fT̂,fV̂,fT̂,V̂ggg → hhhV,Tj,Vj,Tj = − hT,hV,hT,Vjjj.

s4.6d

Applying this to Eq.s4.3d gives, term by term,

ĤAW= ĤW+
1

2
«fT̂,V̂gW+

1

12
«2fT̂,fT̂,V̂ggW

−
1

12
«2fV̂,fT̂,V̂ggW+ ¯ ,
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hW,HAj = hW,Hj + hW,
1

2
«hV,Tjj + hW,

1

12
«2hhV,Tj,Tjj − ¯ ,

s4.7d

from which we can identify

HA = H −
1

2
«hT,Vj +

1

12
«2hT,hT,Vjj −

1

12
«2hV,hT,Vjj + ¯ .

s4.8d

This general result merely transcribes expressions of Lie
commutators into Poisson brackets. It is valid regardless of
the form of the Hamiltonian. For the separable Hamiltonian
s2.5d, we have specific results

hT,Vj = −
]T

]pj

]V

]qj
; − pjVj , s4.9d

hT,hT,Vjj = −
]T

]pi

]hT,Vj
]qi

= piVij pj , s4.10d

hV,hT,Vjj =
]V

]qi

]hT,Vj
]pi

= − ViVi . s4.11d

SinceT=Tshpijd andV=Vshqijd, there is no ambiguity about
the meaning of subscripts onTi or Vj. Also, sinceTij =di j , we
therefore have

HA = H +
1

2
«piVi +

1

12
«2piVij pj +

1

12
«2ViVi + ¯ .

s4.12d

In general, the algorithm’s approximate Hamiltonian is non-
separable and more complicated than the original Hamil-
tonian. A similar expression has been given by Yoshidaf2g in
terms ofHpi

, Hqiqj
, etc. For a separable Hamiltonian of the

form s2.5d, one can certainly writeTi =Hpi
, and Vij =Hqiqj

,
etc., but the latter is not more general than the former. If the
Hamiltonian is not separable, Yoshida’s expression suggests
a degree of generality beyond that of the formalism. It is best
to leave the form of the approximate Hamiltonian function in
terms of Poisson brackets, which is then valid for all Hamil-
tonians.

For higher order algorithms, the Hamiltonian operator
corresponding to any left-right symmetric factorization is

ĤA = T̂ + V̂ + «2seTTVfT̂2V̂g + eVTVfV̂T̂V̂gd

+ «4seTTTTVfT̂T̂3V̂g + eVTTTVfV̂T̂3V̂gd+ seTTVTVfT̂sT̂V̂d2g

+ eVTVTVfV̂sT̂V̂d2gd + ¯ , s4.13d

whereeTTV, eVTTTV, etc. are coefficients specific to a particu-
lar algorithm and where we have used the condensed com-

mutator notationfT̂2V̂g;fT̂,fT̂,V̂gg. Note that for symmetric
decompositions, one has only even order commutators and
the Lie-Poisson correspondence is trivial. In terms of simi-
larly condensed Poisson brackets,hT2Vj;hT,hT,Vjj, the
Hamiltonian function can be read off by inspection,

HA = T + V + «2seTTVhT2Vj + eVTVhVTVjd

+ «4seTTTTVhTT3Vj + eVTTTVhVT3Vj

+ eTTVTVhTsTVd2j + eVTVTVhVsTVd2jd + ¯ .

s4.14d

For the separable Hamiltonians2.5d, these higher brackets
are

hTT3Vj = pipjpkplVijkl ,

hVT3Vj = − 3pipjVijkVk,

hTsTVd2j = − 2pisVikjVk + VikVkjdpj ,

hVsTVd2j = 2ViVijVj . s4.15d

The results in this section will allow us to analyze any sym-
plectic algorithm from second to sixth order. Beyond sixth
order, the number of Lie and Poisson brackets proliferates
and other means of determining the Hamiltonian error terms
may be more efficient.

V. HARMONIC OSCILLATOR: SECOND ORDER
INTEGRATOR

To illustrate some of our key ideas in the simplest context,
we will begin our study of the phase error with the second
order factorization scheme

T2s«,ad ; e1/2«T̂e«V̂1e1/2«T̂, s5.1d

with V̂1 given by

V̂1 = V̂ + a«2fV̂,fT̂,V̂gg. s5.2d

Classically, this Lie commutator produces a modified force
f19g

fV,fT,Vgg = 2Fj
]Fi

]qj

]

]pi
= ¹iuFu2

]

]pi
, s5.3d

resulting in the following more general second order sym-
plectic integrator:

q1 = q0 +
1

2
«p0,

p1 = p0 + «fFsq1d + a«2 ¹ uFsq1du2g,

q2 = q1 +
1

2
«p1. s5.4d

Here, sq0,p0d and sq2,p1d are the initial and final states of
the algorithm, respectively. The introduction of the gradient
term with parametera will allow us to satisfy the correct-
ability criterion in its simplest setting. When applied to the
1D harmonic oscillator with Hamiltonian

Hsq,pd =
p2

2
+

1

2
v2q2, s5.5d

the force gradient is just
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Fsqd = − v2q → ¹quFsqdu2 = 2v4q. s5.6d

For the standard Hamiltonian, the approximation Hamil-
tonian operator for any symmetric factorization is given by
Eq. s4.14d. The nonvanishing error coefficients correspond-
ing to algorithms5.1d are just

eTTV= −
1

24
, eVTV= a −

1

12
, s5.7d

eTTVTV=
1

480
−

1

24
a, eVTVTV=

1

120
−

1

6
a. s5.8d

The Hamiltonian function is then as given by Eq.s4.15d. For
the harmonic oscillator as defined by Eq.s5.5d, we haveVij
=v2di j , Vijk =0, hTT3Vj=0, hVT3Vj=0, and nonvanishing
brackets,

hT,hT,Vjj = v2p2,

hV,hT,Vjj = − v4q2,

hTsTVd2j = − 2v4p2,

hVsTVd2j = 2v6q2. s5.9d

Notice the clear separation between the contributions of the
algorithm, which are the error coefficients, and that of the
physical system, which are the Poisson brackets. The final
form of the Hamiltonian function due to algorithms5.4d is
therefore

HAsq,pd =
1

2
p2 +

1

2
v2q2 + v2«2seTTVp

2 − eVTVv2q2d

− 2v4«4seTTVTVp
2 − eVTVTVv

2q2d + ¯ s5.10d

=
1

2m* p2 +
1

2
k*q2. s5.11d

Thus the oscillator being evolved by the algorithm is one
with an effective mass and spring constant,

m* = m*s«d ; s1 + 2«2v2eTTV− 4«4v4eTTVTV+ ¯ d−1,

s5.12d

k* = k*s«d ; s1 − 2«2v2eVTV+ 4«4v4eVTVTV+ ¯ dv2,

s5.13d

from which one can deduce the approximate angular fre-
quency

vAs«d =Î k*

m* . s5.14d

The phase error is simply related to the fractional deviation
of the approximate angular frequency from the exact fre-
quency:

Df = svA − vdT = 2pSvA

v
− 1D . s5.15d

This is the fundamental thrust of our analysis: tracking the
phase error of the algorithm back to its factorization coeffi-
cients. Observe now that from Eqs.s5.12d and s5.13d, we
have

vAs«d = vÎs1 + 2«2v2eTTV+ ¯ ds1 − 2«2v2eVTV+ ¯ d
s5.16d

=vf1 + «2v2seTTV− eVTVd + Os«4dg. s5.17d

In general, the approximate frequency is second order in er-
ror, as befitting a second order algorithm. However, if the
correctability criterioneTTV=eVTV is satisfied, thenvA is
fourth order. Moreover, if the algorithm is originally fourth
order with eTTV=eVTV=0 then satisfying eTTVTV=eVTVTV
would makevA sixth order. Thus annth algorithm can have
an sn+2dth order phase error if its error coefficient satisfies
the correctability criterion. This is the key connection linking
the phase error with correctable algorithms.fNote that by
making eTTV=eVTV sbut not zerod and eTTVTV=eVTVTV would
not make the phase error sixth order.g

With only one free parameter presently available, we can
only seteTTV=eVTV=− 1

24 with the choice

a =
1

24
, s5.18d

thus makingvA fourth order. This particular value corre-
sponds to the well-known propagator first derived by Taka-
hashi and Imadaf26g for computing the quantum statistical
trace f26g to fourth order. The same factorization scheme,
interpreted as symplectic corrector algorithms5.4d, has also
been used by Lopez-Marcoset al. f13,14g and Wisdomet al.
f11g for solving classical and celestial dynamical problems.
With this choice ofa, the coefficient of the fourth order
frequency error is, from Eqs.s5.12d, s5.13d, ands5.8d,

vs4d

v
= lim

«→0
F 1

«4SvA

v
− 1DG

= 2v4seVTVTV− eTTV
2 − eTTVTVd = −

v4

720
. s5.19d

To gauge the relative importance of this phase error, let us
compare it to the energy error after one period. Since it is the
modified, or approximate Hamiltonian that is conserved by
the algorithm, i.e.,

HAsq,pd = HAsq0,p0d, s5.20d

the energy after one periodT=2p /v can be expressed as

HsqT,pTd = Hsq0,p0d + «2DHT
s2ds«2d + «4DHT

s4ds«2d

+ «6DHT
s6ds«2d + Os«8d. s5.21d

From Eq.s5.10d, we have in particular,

DHT
s2ds«2d = − v2useTTVsp2 − p0

2d − eVTVv2sq2 − q0
2ddut=T,

s5.22d
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DHT
s4ds«2d = 2v4useTTVTVsp2 − p0

2d − eVTVTVv
2sq2 − q0

2ddut=T.

s5.23d

In order to compute these energy deviation errors, we must
solve forpstd andqstd according to HamiltonianHA:

Sqst;«d
pst;«d

D = S cossvAtd sm*vAd−1 sinsvAtd
− sm*vAdsinsvAtd cossvAtd

DSq0

p0
D .

s5.24d

Sincem* and vA are «2-dependent, each functionDHsnds«2d
contains further dependence on«2. We now define the con-
stant energy error coefficientsET

snd via

HsqT,pTd − Hsq0,p0d ; DET = «2ET
s2d + «4ET

s4d + «6ET
s6d

+ Os«8d, s5.25d

where, for example, we have

ET
s2d = DHT

s2ds0d,

ET
s4d = DHT

s4ds0d + DHT
s2d8s0d,

ET
s6d = DHT

s6ds0d + DHT
s4d8s0d +

1

2!
DHT

s2d9s0d,

ET
s8d = DHT

s8ds0d + DHT
s6d8s0d +

1

2!
DHT

s4d9s0d +
1

3!
DHT

s2d-s0d.

s5.26d

Here, the prime denotes derivative with respect to«2. From
the form of eachDHT

snds«2d, since«=0 implies thatvA=v,
psTd=p0, andqsTd=q0, we must have

DHT
snds0d = 0, s5.27d

and therefore

ET
s2d = 0. s5.28d

Thus for periodic motion, despite the fact the algorithm is
only second order, the energy error is actually fourth order
after one period.

The fourth order energy error is given by

ET
s4d = DHT

s2d8s0d = − 2v2useTTVpTpT8 − eVTVv2qTqT8du«=0

= 4pv5p0q0seTTV− eVTVdseTTV+ eVTVd, s5.29d

where we have used

q8sT;0d =
1

v
p0vA8s0dT andp8sT;0d = − vq0vA8s0dT,

s5.30d

and from Eq.s5.17d,

vA8s0dT = 2pv2seTTV− eVTVd. s5.31d

The fourth order error now vanishes if the algorithm satisfies
the correctability criterioneTTV=eVTV. Thus for acorrectable
second order algorithm, after each period, the phase error is
fourth order and the energy error is sixth order.

Since the factors5.31d is common to all first derivatives
sin «2d, we conclude that foreTTV=eVTV

DHT
snd8s0d = 0. s5.32d

Hence foreTTV=eVTV, the sixth order energy error can be
now computed as

ET
s6d =

1

2
DHT

s2d9s0d s5.33d

=2pv6f2psp0
2 − v2q0

2d − p0q0vgseTTV+ eVTVd

3seTTV− eVTVd2 − 4pp0q0v7seTTV+ eVTVd

3f2seTTVTV− eVTVTVd + eTTV
2 + eVTV

2 g =
pv7

2160
p0q0.

s5.34d

The above calculation demonstrates the general property
of the energy deviation error after one period. For correctable
algorithms, the first two terms in the error expansions5.26d
vanish identically, which means that to computeET

s6d, one
need not know the explicit formDHT

s6ds«2d. However, in or-
der to computeDHT

s2d9s0d, one must knowm*s«2d andvAs«2d
accurately toOs«4d, which means knowing the fourth order
Hamiltonian error function, orDHT

s4ds«2d. Thus although Eq.
s5.33d makes no reference toDHT

s4ds«2d, one must know it
implicitly. Similarly, ET

s8d can be computed fromDHT
s2ds«2d

andDHT
s4ds«2d via

ET
s8d =

1

2!
DHT

s4d9s0d +
1

3!
DHT

s2d-s0d. s5.35d

However, in order to computeDHT
s2d9s0d one must know

DHs2ds«2d correctly toOs«6d. This would again require know-
ing the sixth order error Hamiltonian orDHs6ds«2d. In gen-
eral,ET

snd can be computed two orders beyond the accuracy of
knowing the Hamiltonian.

To summarize, for a second order algorithm, the energy
after one period is automatically fourth order in« s=Dtd. If
the algorithm is correctable, then the energy error is sixth
order. For special initial conditionsp0=0 orq0=0, by solving
the algorithm exactly in the case of the harmonic oscillator
f28g, one can show that the energy error is actually tenth
order. This last error reduction only occurs for the harmonic
oscillator. Nevertheless this further emphasizes that the en-
ergy error after one period is not a very good gauge of any
integrator’s accuracy. On the other hand, the phase error, as
reflected in the fractional change of the oscillator’s angular
frequency, can at most be fourth order and is a much more
stringent and discriminating benchmark.

VI. HARMONIC OSCILLATOR: FOURTH ORDER
FORWARD INTEGRATORS

Beyond second order, all symplectic algorithms of the
form s2.10d must have some negative intermediate time steps
f29–31g. This means that at some intermediate time, the al-
gorithm is moving the phase trajectory backward in time. For
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classical mechanics, which is time-reversible, these negative
time steps are harmless. However, for solving time-
irreversible problems, such as the diffusion or Fokker-Planck
equation, backward time step evolution is not possible. These
systems can only be solved byforward decomposition algo-
rithms, with all positive, even intermediary, time steps. Some
fourth order forward algorithms have been derived recently
for solving a variety of time-irreversiblef32,33g and time-
reversiblef19,21,22g equations, both with excellent results.
Beyond second order, purely forward time steps are possible

only if one includes the commutatorfV̂,fT̂,T̂gg in addition to

operatorsT̂ and V̂ in the factorization process. In this work
we will apply these fourth order forward algorithms to study
the phase problem of periodic motion. In this section, we
further generalize our study of the harmonic oscillator by use
of these fourth order forward algorithms.

Chin and Chenf21,22g have introduced a family of fourth
order forward algorithms 4ACBparametrized by a parameter
t0. We use here a slightly generalized form by multiplying
the central commutator by 1−a and addinga /2 times the
commutator to each potential operator on each side. The re-
sulting algorithm has the operator form

TACB
s4d s«,ad ; et0«T̂ev1«V̂1et1«T̂ev2«V̂2et1«T̂ev1«V̂1et0«T̂, s6.1d

where

V̂1 = V̂ +
a

2

u0

v1
«2fV̂,fT̂,V̂gg,

V̂2 = V̂ + s1 − ad
u0

v2
«2fV̂,fT̂,V̂gg, s6.2d

u0 =
1

12
F1 −

1

1 − 2t0
+

1

6s1 − 2t0d3G , s6.3d

and

t1 =
1

2
− t0, v1 =

1

6

1

s1 − 2t0d2, v2 = 1 − 2v1. s6.4d

The corresponding forward symplectic integrator can be read
off directly as

q1 = q0 + «t0p0,

p1 = p0 + «Fv1Fsq1d +
a

2
u0«2 ¹ uFsq1du2G ,

q2 = q1 + «t1p1,

p2 = p1 + «fv2Fsq2d + s1 − adu0«2 ¹ uFsq2du2g,

q3 = q2 + «t1p2,

p3 = p2 + «Fv1Fsq3d +
a

2
u0«2 ¹ uFsq3du2G ,

q4 = q3 + «t0p3, s6.5d

wheresq0,p0d and sq4,p3d are the initial and final states of
the algorithm, respectively. The parametera can be changed
from 0 to 1, but there is really no restriction on its range.
When applied to the harmonic oscillator, the parametera can
be used to correct the algorithm to sixth order. The parameter
t0 can be varied from 0 totc= 1

2s1−1/Î3d<0.21. Fort0=0,
the final force evaluation can be reused at the next iteration,
thus eliminating one force evaluation. At the upper limit of
t0= tc, v2=0 also eliminates one force evaluation. Fort0. tc,
v2 becomes negative, and the algorithm ceases to be a for-
ward algorithm.

Our analysis of the second order algorithm can now be
repeated verbatim for the fourth order case. The approximate
Hamiltonian operator corresponding to any symmetric fourth
order algorithm is of the form

ĤA = T̂ + V̂ + «4seTTTTVfT̂T̂3V̂g + eVTTTVfV̂T̂3V̂g

+ eTTVTVfT̂sT̂V̂d2g + eVTVTVfV̂sT̂V̂d2gd + Os«6d.

s6.6d

For the harmonic oscillator,fT̂3V̂g=0, and the first two error
terms vanish identically. The evaluation of the last two error
coefficients for the family of fourth order algorithms6.5d is
nontrivial and is given in the Appendix. The corresponding
Hamiltonian function, after recalling the Poisson forms4.15d
and bracketss5.9d, is

HAsq,pd =
p2

2
+

1

2
v2q2 − 2v4«4seTTVTVp

2 − eVTVTVv
2q2d

+ ¯ , s6.7d

=
1

2m* p2 +
1

2
k*q2, s6.8d

with

m* = m*s«d ; s1 − 4«4v4eTTVTV+ ¯ d−1, s6.9d

k* = k*s«d ; v2s1 + 4«4v4eVTVTV+ ¯ d, s6.10d

and approximate frequency

vAs«d = vÎs1 + 4«4v4eVTVTV+ ¯ ds1 − 4«4v4eTTVTV+ ¯ d
s6.11d

=vf1 + 2«4v4seVTVTV− eTTVTVd + Os«6dg. s6.12d

Again, one immediately sees that if the sixth order correct-
ability criterion

eVTVTV= eTTVTV s6.13d

is satisfied, thenvA will be sixth order. Note that we now
have

uvA8Tu«=0 = 0,
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uvA9Tu«=0 = 4pv4seTTVTV− eVTVTVd, s6.14d

where primes still denote derivative with respect to«2. The
conservation ofHAsq,pd again implies that the energy devia-
tion after one period can be expressed as

HsqT,pTd = Hsq0,p0d + «4DHT
s4ds«2d + «6DHT

s6ds«2d

+ «8DHT
s8ds«2d + Os«10d, s6.15d

with

DHT
s4ds«2d = 2v4useTTVTVsp2 − p0

2d − eVTVTVv
2sq2 − q0

2ddut=T.

s6.16d

The constant energy error coefficientsET
snd defined by

HsqT,pTd − Hsq0,p0d ; DET = «4ET
s4d + «6ET

s6d + «8ET
s8d

+ «10ET
s10d + Os«12d s6.17d

are now of the form

ET
s4d = DHT

s4ds0d,

ET
s6d = DHT

s6ds0d + DHT
s4d8s0d,

ET
s8d = DHT

s8ds0d + DHT
s6d8s0d +

1

2!
DHT

s4d9s0d,

ET
10 = DHT

s10ds0d + DHT
s8d8s0d +

1

2!
DHT

s6d9s0d +
1

3!
DHT

s4d-s0d.

s6.18d

Now, because of Eq.s6.14d, for eTTVTV=eVTVTV, not only do
we haveDHT

snds0d=0, but also

DHT
snd8s0d = 0 andDHT

snd9s0d = 0. s6.19d

This implies that

ET
s4d = ET

s6d = ET
s8d = 0, s6.20d

and the first nonvanishing energy error is tenth order,

ET
10 =

1

3!
DHT

s4d-s0d. s6.21d

However, as noted in the last section, in order to compute
this, one must determine the sixth order error Hamiltonian.

Due to the complexity of the algorithm, these higher error
terms are difficult to compute by Lie series. However, they
can always be computed using the matrix methodf28g. For
brevity, we will skip over the details and just report the final
results.

We have shown earlier that the fourth order phase error
term will vanish if eTTVTV=eVTVTV. For a given value oft0,
this criterion can now be satisfied by a specific choice ofa
given bya=ast0d in Eq. sA12d. Using this functional form to
eliminate a in terms of t0, the sixth order error term
vs6d /v= fst0d scaled such thatv=1, is plotted in Fig. 1.

Within the forward range of 0ø t0ø0.21, the sixth order
frequency error has a minimum of value

Uvs6d

v
U

min
= 7.7186213170578573 10−7v6, s6.22d

at t0=0.12129085056575276, and a pole at
t0 = 0.13882413776781183.

Note that outside of the forward range, the error can actually
vanish att0=0.24265927253055103.

The eighth order energy deviation error after one period is

DET
s8d = 16pv9seTTVTV

2 − eVTVTV
2 dq0p0, s6.23d

which again vanishes foreTTVTV=eVTVTV or eTTVTV=−eVTVTV,
analogous to the second order case.

Thus for a corrected fourth order algorithm, the first non-
zero energy deviation error is tenth order. This is plotted in
Fig. 2 scaled such thatv=q0=p0=1.

Within the forward range of 0ø t0ø0.21, the tenth order
energy deviation error has a minimum of value

FIG. 1. The sixth order angular frequency error as a function of
the algorithm’s parametert0.

FIG. 2. The tenth order energy deviation error after one period
as a function of the algorithm’s parametert0.
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uDET
s10dumin = − 1.33987138130126353 10−9v11q0p0,

s6.24d

at t0=0.12482248354859667 and a pole att0
=0.13882413776781183,ssame as in the frequency cased. In
both cases the error term vanishes at the same value, i.e.,
t0=0.24265927253055103, outside of the forward range.
sNote also that this error term vanishes for a special starting
value of p0=0 or q0=0. It can be shown that for eitherp0
=0 or q0=0, the first nonvanishing energy error term is 16th
order, again demonstrating that the phase error dominates
overwhelmingly over the energy error.d

VII. THE 2D KEPLER PROBLEM

In light of our previous discussion, for long-term trajec-
tory simulation, one must judge all symplectic algorithms on
how well they minimize the phase errors rather than the en-
ergy error. In this section, we will examine Keplerian mo-
tions in 2D defined by the Hamiltonian

H =
1

2
p2 −

1

uqu
. s7.1d

Here, our analysis of fourth order algorithms will not be as
extensive as in the harmonic oscillator case because the ap-
proximate Hamiltonian

ĤA = T̂ + V̂ + «4seTTTTVfT̂T̂3V̂g + eVTTTVfV̂T̂3V̂g

+ eTTVTVfT̂sT̂V̂d2g + eVTVTVfV̂sT̂V̂d2gd + Os«6d
s7.2d

can no longer be solved analytically. The operatorfT̂3V̂g
Þ0 and while we can still forceeTTVTV=eVTVTV as in the
harmonic oscillator case, we have no way of ensuring that
eTTTTV=eVTTTV. Currently, there are no known fourth order
forward symplectic algorithms that can be corrected to sixth
order. Nevertheless, identical analysis as in the harmonic os-
cillator case shows that

ET
s4d = DHT

s4ds0d = 0, s7.3d

and the energy error after one period must be at least sixth
order. Thus if fourth order algorithms are used to solve
Keplerian orbits, it is more fitting to examine their fourth
order phase errors instead.

For two-dimensional motion, there are two basic phase
angles associated with the two sets of canonical variables
sq1,p1d and sq2,p2d. A convenient measure of these phase
errors is the precession error of the orbit in thesq1,q2d plane,
which can be trackedf20g by the rotation of the Laplace-
Runge-LenzsLRLd vector

A = p 3 L − q̂. s7.4d

In the above definition,L =q3p is the angular momentum
vector.

To see how various algorithms compare, we first plot the
fourth order energy error function defined by

H4„qstd,pstd… = lim
«→0

1

«4E0
fE„qstd,pstd… − E0g s7.5d

in Fig. 3.
Note that this is an intrinsic function characteristic of each

algorithm independent of the step size. We compute this
function by finding the energy deviation from the initial en-
ergy along the orbit and then dividing it by«4. As « gets
smaller and smaller, this function converges to its limiting
form. The functional form is basically unchanged for«
øT/3000, whereT is the period of the Keplerian orbit. All
results shown in Fig. 3 are computed with«=T/5000.

Since we have shown thatE(qsTd ,psTd)−E0=Os«6d, H4

vanishes exactly after one period. Thus each energy error
curve of Fig. 3 reverts back to zero att=T. This is a charac-
teristic behavior of all symplectic algorithms. Nonsymplectic
Runge-Kutta algorithms do not have this property and their
energy deviation error accumulates rather than vanishing af-
ter each period. However, even for symplectic algorithms,
the energy deviation error is nonvanishing at other times.
Here, due to the high eccentricityse=0.9d of the orbit, the
energy error is at a maximum near midperiod. Algorithm
Chin-C sCd, is the forward algorithms6.1d with t0=1/6 and
a=0, first derived inf19g; Blanes-MoansBMd is an algo-
rithm recommended in McLachlan and Quispel’s reviewf5g;
Omelyanet al. f25g sOd is a recent alternative forward algo-
rithm that uses the same force gradient defined by Eq.s5.6d;
McLachlanf3g sMd is a greatly improved version of the first
fourth order Ruth-Forestf23g algorithm. With the exception
of M, all algorithms have comparable error height at midpe-
riod. Note, however, that BM requires six force evaluations,
M uses four force evaluations, O uses four force plus four
force-gradient evaluations, but C uses only three force and
one force-gradient evaluation. Algorithm M’s error height
reaches up to 14, which is more than 20 times higher. This is
rather surprising, since algorithm M works very well in solv-
ing quantum mechanicalf21,34g and three-bodyf22g prob-
lems.

In Fig. 4 we track the rotation of the LRL vector during
orbital motion. If the orbit is exact, the LRL vector is a

FIG. 3. The energy error at half a period for an eccentricity of
0.9.
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constant vector pointing along the semimajor axis of the or-
bit. If the orbit precesses, then the LRL vector rotates accord-
ingly. At any point in the orbit, the angle of the LRL vector
is given by

ustd = tan−1FAystd
Axstd

G = e4u4std + «6u6std + ¯ , s7.6d

from which one can extract the fourth order angle error func-
tion via

u4std = lim
e→0

1

e4ustd. s7.7d

Again, this intrinsic function is computed in the limit of
small «. We have checked that it has indeed converged to its
limiting form for «=T/5000. Since the orbit precesses the
most when the particle is closest to the attractor, the LRL
vector rotates measurably only during midperiod. It is con-
stant before, and remained constant after, the midperiod.
Thus the rotation after one period is essentially the same as
the rotation shortly after midperiod. Note that thissphased
angle errordoes notrevert back to zero after each period, but
accumulates after each period even for symplectic algorithms
regardless of order. Thus the only way to minimize this
phase error is to make it as small as possible. From Fig. 4 we
see that algorithm C’s rotation angle after midperiod in
nearly an order of magnitude smaller that that of either BM
or O. The actual values after one period are 0.0076, −0.0692,
and −0.1466, respectively. Algorithm M’s rotation function
reaches down to<−2.5, which is an order of magnitude
greater than that of BM and O and two orders of magnitude
greater than that of C. We did not bother to plot it.

Since parameterst0 and a are at our disposal, we can
further optimize the family of algorithms6.1d to reduce the
rotation error. The resulting optimal choice is shown in Fig.

5, with t0=0.166160 anda=0. The angle error after one
period is further reduced by a factor of 5 from 0.0360 to
0.0077.

While one can optimize the family of algorithms6.1d for
any one specific problem, or at one eccentricity, it is of
greater value to devise an optimal algorithm for solving a
general class of problems. For the Kepler problem, all pos-
sible shapes of closed orbits are spanned by the eccentricity;
it is thus more desirable if one can devise an optimal algo-
rithm for all values of the eccentricity. In Fig. 6 we plot the
LRL rotation angle after one period as a function of the
orbit’s eccentricity, as determined by different initial condi-
tions.

Most algorithms work well for orbits of low eccentricity
and the rotation angle is correspondingly small. We therefore
compare algorithms ateù0.9. At e=0.95, the angle error
values for M, BM, O, and C are, respectively, −166.1870,
−4.8865, −10.4470, and 0.1244. Algorithm C’s angle error is
orders of magnitude smaller than other algorithms.

In Fig. 7 we again show that a better algorithm can be
devised from the family of algorithmss6.1d. The choice of
a=0 sonly one force-gradientd and t0=0.166160 sonly

FIG. 4. The precession deviation error after half a period for
eccentricity 0.9 with starting pointq=s10,0d andp=s0,0.1d.

FIG. 5. The precession deviation error after half a period for
eccentricity 0.936 with starting pointq=s10,0d andp=s0,0.08d.

FIG. 6. The precession deviation error for highly eccentric
orbits.
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slightly below the canonical value oft0=1/6d, produces an
algorithm with uniformly small phase error up toe=0.95. At
e=0.95 the angle error value for Opt-C is −0.00357, com-
pared to C’s value of 0.12363.

VIII. CONCLUSION

In this work we showed that for periodic motion, the en-
ergy error after one period is generally two orders higher
than that of the algorithm. If the algorithm is correctable, the
phase error can also be reduced two orders higher. The use of
fourth order forward time step integrators can result in sixth
order accuracy for the phase error and eighth accuracy in the
periodic energy. By generalizing the recently discovered one-
parameter family of fourth order symplectic algorithmsf21g,
we can minimize the energy and phase error to even higher
order. The results of this study provide a direct verification of
Chin’s correctability criterionf16g for correcting a symplec-
tic algorithm to higher order. In particular, we showed that
the correctability criterion is superior to the conventional
wisdom of minimization of the sum of squares of error co-
efficients. The most important conclusion of this work is that
for periodic motion, the phase error is a more discriminating
gauge of an algorithm’s effectiveness than the energy error.

As a more important application of the phase error analy-
sis, we track the orbital precession angle of the 2D Kepler
problem by monitoring the rotation angle of the Laplace-
Runge-Lenz vectorf20g. By comparing with various recent
fourth order algorithms, we demonstrated the uniqueness of
the forward symplectic algorithm in minimizing the phase
error of this important class of celestial mechanics problems.
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APPENDIX: FOURTH ORDER ERROR COEFFICIENTS

The error coefficients of the fourth order forward algo-
rithm s6.1d can be computed in terms of algorithm’s factor-

ization coefficients via aMATHEMATICA programf32g. They
are

eT = 2st0 + t1d, sA1d

eV = s2v1 + v2d, sA2d

eTTV= −
1

6
ft1

2s− 4v1 + v2d + t0
2s2v1 + v2d + 2t0t1s2v1 + v2dg,

sA3d

eVTV=
1

6
f6u0 − t0s2v1 + v2d2 + t1s2v1

2 + 2v1v2 − v2
2dg,

sA4d

eTTTTV=
1

360
f7t0

3st0 + 4t1ds2v1 + v2d

+ t1
3s4t0 + t1ds7v2 − 16v1d + 6t0

2t1
2s4v1 + 7v2dg,

sA5d

eVTTTV=
1

90
f2t0

2st0 + 3t1ds2v1 + v2d2 − 6t0t1
2s6v1

2 + v1v2 − v2
2d

+ t1
3s8v1

2 − 7v1v2 + 2v2
2dg, sA6d

eTTVTV=
1

60
ft0

3s2v1 + v2d2

+ t1
2s10s3a − 1du0 + t1s− 16v1

2 + 4v1v2 + v2
2dd

+ t0
2s− 10u0 + t1s2v1

2 + 2v1v2 + 3v2
2dd

+ t0t1s− 20u0 + t1s12v1
2 + 2v1v2 + 3v2

2ddg, sA7d

eVTVTV=
1

60
f2t0

2s2v1 + v2d3

− 4t0s2v1 + v2ds5u0 + t1sv1
2 + v1v2 − v2

2dd

+ t1s10u0f2v1 + s3a − 2dv2g

− t1s4v1
3 + v1

2v2 + 3v1v2
2 − 2v2

3ddg. sA8d

In order for the algorithm to be fourth order, we must have
eT=eV=1 andeTTV=eVTV=0. These four constraints can be
satisfied by

t1 = t2 =
1

2
− t0, t3 = t0, v1 = v3 =

1

6s1 − 2t0d2 , sA9d

v2 = 1 − sv1 + v3d, u0 =
1

12
F1 −

1

1 − 2t0
+

1

6s1 − 2t0d3G .

sA10d

This is the family of fourth order algorithmss6.1d with pa-
rameterst0 and a. For the harmonic oscillator,eTTTTV and
eVTTTV vanish identically. A fourth order algorithm can be
corrected to sixth order if one can seteTTVTV=eVTVTV. Sub-
stituting Eqs.sA9d andsA10d into Eqs.sA7d andsA8d gives

FIG. 7. The precession deviation error for highly eccentric
orbits.
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eTTVTV and eVTVTV as functions of the parameterst0 and a,
i.e.,

eTTVTV=
1 + 5a − 12t0f1 + 5a + 20at0s− 1 + t0dg

2880s1 − 2t0d
,

eVTVTV=
1 + 10a − 6t0„3 + 30a − t0h9 + 210a + 8t0f1 − 85a − 3t0s1 − 40a + 20at0dgj…

4320s1 − 2t0d4 . sA11d

Solving for eTTVTV=eVTVTV determinesa as a function oft0:

a =
1 + 6t0h− 3 + 4t0f6 + t0s− 23 + 24t0dgj

5f1 − 12t0s1 − 2t0d2gf1 − 6t0s1 + 2t0 − 4t0
2dg

. sA12d

However, there exists no real solution of the parameters for which botheTTVTVandeVTVTVcan be set to zero, i.e., we can have
an algorithm that is correctable to sixth order, but not a real sixth order algorithm.
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